2014年中考数学解直角三角形试题汇编


又BC=4,即BD+CD=4,所以 x+x=4,
解得x=6?2 .
答:这个标志性建筑物底部A到岸边BC的最短距离为(6?2 )公里.

点评:本题考查了解直角三角形的应用?方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.
 
6.(2014年天津市,第22题10分)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.
(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为   m;
(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).

考点:解直角三角形的应用.
专题:应用题.
分析:(1)根据中点的性质即可得出A′C′的长;
(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.
解答:解:(I)∵点C是AB的中点,
∴A'C'= AB=23.5m.
(II)设PQ=x,
在Rt△PMQ中,tan∠PMQ= =1.4,
∴MQ= ,
在Rt△PNQ中,tan∠PNQ= =3.3,
∴NQ= ,
∵MN=MQ?NQ=40,即 ? =40,
解得:x≈97.
答:解放桥的全长约为97m.
点评:本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.
 
7.(2014年云南省,第21题6分)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取 ≈1.73,结果保留整数)

考点:解直角三角形的应用-仰角俯角问题
分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.
解答:解:∵∠BDE=30°,∠BCE=60°,
∴∠CBD=60°?∠BDE=30°=∠BDE,
∴BC=CD=10米,
在Rt△BCE中,sin60°= ,即 = ,
∴BE=5 ,
AB=BE+AE=5 +1≈10米.
答:旗杆AB的高度大约是10米.
点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
 
8.(2014•四川自贡,第18题8分)如图,某学校新建了一座吴玉章雕塑,小林站在距离雕塑2.7米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据: )

考点:解直角三角形的应用-仰角俯角问题
分析:首先分析图形:根据题意构造两个直角三角形△DEB、△CEB,再利用其公共边BE求得DE、CE,再根据CD=DE?CE计算即可求出答案.
解答:解:在Rt△DEB中,DE=BE•tan45°=2.7米,
在Rt△CEB中,CE=BE•tan30°=0.9 米,
则CD=DE?CE=2.7?0.9 ≈1.2米.
故塑像CD的高度大约为1.2米.
点评:本题考查解直角三角形的知识.要先将实际问题抽象成数学模型.分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系.
9.(2014•云南昆明,第20题6分)如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,
tan32°= 0.62)
考点:解直角三角形的应用-仰角俯角问题。
分析:根据已知条件转化为直角三角形中的有关量,然后选择合适的边角关系求得长度即可.
解答:解:过点B作 ,垂足为E(如图),
在Rt△DEB中, , (米),

(米)

(米)
答:旗杆CD的高度为15.1米.
点评:本题考查了解直角三角形的应用,解题的关键是利用仰俯角的定义将题目中的相关量转化为直角三角形BDE中的有关元素.
10.(2014•浙江宁波,第21题8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.
(1)求改直的公路AB的长;
(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)

考点:解直角三角形的应用
分析:(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH中,根据三角函数求得BH,再根据AB=AH+BH即可求解;
(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC?AB列式计算即可求解.
解答:解:(1)作CH⊥AB于H.
在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2千米,
AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1千米,
在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6千米,
∴AB=AH+BH=9.1+5.6=14.7千米.
故改直的公路AB的长14.7千米;
(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7千米,
则AC+BC?AB=10+7?14.7=2.3千米.
答:公路改直后比原来缩短了2.3千米.

点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.

11. (2014•益阳,第18题,8分)“中国?益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).
参考数据:
sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;
sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.

(第1题图)
考点:解直角三角形的应用.
分析:设AD=x米,则AC=(x+82)米.在Rt△ABC中,根据三角函数得到AB=2.5(x+82),在Rt△ABD中,根据三角函数得到AB=4x,依此得到关于x的方程,进一步即可求解.
解答:解:设AD=x米,则AC=(x+82)米.
在Rt△ABC中,tan∠BCA= ,
∴AB=AC•tan∠BCA=2.5(x+82).
在Rt△ABD中,tan∠BDA= ,
∴AB=AD•tan∠BDA=4x.
∴2.5(x+82)=4x,
解得x= .
∴AB=4x=4× ≈546.7.
答:AB的长约为546.7米.
点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.

12. (2014•益阳,第21题,12分)如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.
(1)求AD的长;
(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;
(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.

(第2题图)
考点:相似形综合题.
分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;
(2)若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据 ≠ 且 ≠ ,得出△PCB与△ADP不相似.
(3)先求出S1=x• ,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN= ( x?1),在Rt△BMN中,求出BM2= x2? x+ ,最后根据S1=x•BM2代入计算即可.②当0<x≤2时,S2=x( x2? x+ ),最后根据S=S1+S2= x(x? )2+ x即可得出S的最小值.
解答:解:(1)过点C作CE⊥AB于E,

在Rt△BCE中,
∵∠B=60°,BC=4,
∴CE=BC•sin∠B=4× =2 ,
∴AD=CE=2 .
(2)存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,
则△PCB必有一个角是直角.
①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,
∴AP=AB?PB=2.
又由(1)知AD=2 ,在Rt△ADP中,tan∠DPA= = = ,
∴∠DPA=60°,
∴∠DPA=∠CPB,
∴△ADP∽△CPB,
∴存在△ADP与△CPB相似,此时x=2.
②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,
∴PB=2,PC=2 ,
∴AP=3.
则 ≠ 且 ≠ ,此时△PCB与△ADP不相似.
(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=x•( )2=x• ,
①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;
作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.

在Rt△GBH中,BH= BC=2,∠MGB=30°,
∴BG=4,
∵BN= PB= (10?x)=5? x,
∴GN=BG?BN= x?1.
在Rt△GMN中,∴MN=GN•tan∠MGN= ( x?1).
在Rt△BMN中,BM2=MN2+BN2= x2? x+ ,
∴S1=x•BM2=x( x2? x+ ).
②∵当0<x≤2时,S2=x( x2? x+ )也成立,
∴S=S1+S2=x• +x( x2? x+ )= x(x? )2+ x.
∴当x= 时,S=S1+S2取得最小值 x.
点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.
13. (2014•株洲,第17题,4分)计算: +(π?3)0?tan45°.

考点:实数的运算;零指数幂;特殊角的三角函数值.
分析:原式第一项利用平方根定义化简,第二项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.
解答:解:原式=4+1?1=4.
点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

14. (2014•株洲,第22题,8分)如图,在Rt△ABC中,∠C=90°,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).
(1)求证:△ACE≌△AFE;
(2)求tan∠CAE的值.

考点:全等三角形的判定与性质;角平分线的性质;勾股定理;锐角三角函数的定义
分析:(1)根据角的平分线的性质可求得CE=EF,然后根据直角三角形的判定定理求得三角形全等.
(2)由△ACE≌△AFE,得出AC=AF,CE=EF,设BF=m,则AC=2m,AF=2m,AB=3m,根据勾股定理可求得,tan∠B= = ,CE=EF= ,在RT△ACE中,tan∠CAE= = = ;
解答:(1)证明:∵AE是∠BAC的平分线,EC⊥AC,EF⊥AF,
∴CE=EF,
在Rt△ACE与Rt△AFE中,

∴Rt△ACE≌Rt△AFE(HL);
(2)解:由(1)可知△ACE≌△AFE,
∴AC=AF,CE=EF,
设BF=m,则AC=2m,AF=2m,AB=3m,
∴BC= = = m,
∴在RT△ABC中,tan∠B= = = ,
在RT△EFB中,EF=BF•tan∠B= ,
∴CE=EF= ,
在RT△ACE中,tan∠CAE= = = ;
∴tan∠CAE= .
点评:本题考查了直角三角形的判定、性质和利用三角函数解直角三角形,根据已知条件表示出线段的值是解本题的关键.
15. (2014•株洲,第23题,8分)如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),以线段AB为边向上作等边三角形ABC.
(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(图1);
(2)设∠AOB=α,当线段AB、与圆O只有一个公共点(即A点)时,求α的范围(图2,直接写出答案);
(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长度(图3).

(第5题图)
考点:圆的综合题;等边三角形的性质;勾股定理;切线的性质;相似三角形的判定与性质;特殊角的三角函数值.
分析:(1)连接OA,如下图1,根据条件可求出AB,然后AC的高BH,求出BH就可以求出△ABC的面积.
(2)如下图2,首先考虑临界位置:当点A与点Q重合时,线段AB与圆O只有一个公共点,此时α=0°;当线段AB所在的直线与圆O相切时,线段AB与圆O只有一个公共点,此时α=60°.从而定出α的范围.
(3)设AO与PM的交点为D,连接MQ,如下图3,易证AO∥MQ,从而得到△PDO∽△PMQ,△BMQ∽△BAO,又PO=OQ=BQ,从而可以求出MQ、OD,进而求出PD、DM、AM、CM的值.
解答:解:(1)连接OA,过点B作BH⊥AC,垂足为H,如图1所示.
∵AB与⊙O相切于点A,
∴OA⊥AB.
∴∠OAB=90°.
∵OQ=QB=1,
∴OA=1.
∴AB= = = .
∵△ABC是等边三角形,
∴AC=AB= ,∠CAB=60°.
∵sin∠HAB= ,
∴HB=AB•sin∠HAB= × =.
∴S△ABC=AC•BH=× ×= .
∴△ABC的面积为 .
(2)①当点A与点Q重合时,
线段AB与圆O只有一个公共点,此时α=0°;
②当线段A1B所在的直线与圆O相切时,如图2所示,
线段A1B与圆O只有一个公共点,
此时OA1⊥BA1,OA1=1,OB=2,
∴cos∠A1OB= =.
∴∠A1OB=60°.
∴当线段AB与圆O只有一个公共点(即A点)时,
α的范围为:0°≤α≤60°.
(3)连接MQ,如图3所示.
∵PQ是⊙O的直径,
∴∠PMQ=90°.
∵OA⊥PM,
∴∠PDO=90°.
∴∠PDO=∠PMQ.
∴△PDO∽△PMQ.
∴ = =
∵PO=OQ=PQ.
∴PD=PM,OD=MQ.
同理:MQ=AO,BM=AB.
∵AO=1,
∴MQ=.
∴OD=.
∵∠PDO=90°,PO=1,OD=,
∴PD= .
∴PM= .
∴DM= .
∵∠ADM=90°,AD=A0?OD=,
∴AM= = = .
∵△ABC是等边三角形,
∴AC=AB=BC,∠CAB=60°.
∵BM=AB,
∴AM=BM.
∴CM⊥AB.
∵AM= ,
∴BM= ,AB= .
∴AC= .
∴CM= = = .
∴CM的长度为 .

点评:本题考查了等边三角形的性质、相似三角形的性质与判定、直线与圆相切、勾股定理、特殊三角函数值等知识,考查了用临界值法求角的取值范围,综合性较强.
16.(2014年江苏南京,第23题)如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=51°18′,求梯子的长.
(参考数据:sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)考点:解直角三角形的应用
分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD?OB,得到关于x的方程,解方程即可求解.
解答:设梯子的长为xm.
在Rt△ABO中,cos∠ABO= ,∴OB=AB•cos∠ABO=x•cos60°= x.
在Rt△CDO中,cos∠CDO= ,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.
∵BD=OD?OB,∴0.625x? x=1,解得x=8.故梯子的长是8米.
点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.
17. (2014•泰州,第22题,10分)图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).
(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

考点:解直角三角形的应用
分析:过C点作FG⊥AB于F,交DE于G.在Rt△ACF中,根据三角函数可求CF,在Rt△CDG中,根据三角函数可求CG,再根据FG=FC+CG即可求解.
解答:解:过C点作FG⊥AB于F,交DE于G.
∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,
∴∠ACF=90°+12°?80°=22°,
∴∠CAF=68°,
在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,
在Rt△CDG中,CG=CD•sin∠CDE≈0.336m,
∴FG=FC+CG≈1.1m.
故跑步机手柄的一端A的高度约为1.1m.

点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.

18.(2014•呼和浩特,第18题6分)如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)

考点:解直角三角形的应用-方向角问题.
分析:首先根据题意得出∠MPA=∠A=65°,以及∠DBP=∠DPB=45°,再利用解直角三角形求出即可.
解答:解:如图,过点P作PD⊥AB于点D.
由题意知∠DPB=∠DBP=45°.
在Rt△PBD中,sin45°= = ,
∴PB= PD.
∵点A在点P的北偏东65°方向上,
∴∠APD=25°.
在Rt△PAD中,cos25°= .
∴PD=PAcos25°=80 cos25°,
∴PB=80 cos25°.

点评:此题主要考查了方向角含义,正确记忆三角函数的定义得出相关角度是解决本题的关键.