第十一课时 相似三角形的性质(2)
教学目标:
1、运用类比的思想方法,通过实践探索得出相似三角形,对应线段(高、中线、角平分线)的比等于相似比;
2、会运用相似三角形对应高的比与相似比的性质解决有关问题;
3、经历“操作―观察―探索―说理”的数学活动过程,发展合情推理和有条理的表达能力。
教学重点:探索得出相似三角形,对应线段的比等于相似比
教学难点:利用相似三角形对应高的比与相似比的性质解决问题
教学设计:
一、情境创设
全等三角形的对应边上的高相等。相似三角形的对应边上的高又有怎样的关系呢?
二、探索活动:
1、如图,△ABC∽△A′B′C′,相比为k,AD与A′D′分别是△ABC和△A′B′C′的高,说明:AD/A′D′=k
由此引出:相似三角形对应高的比等于相似比
2、全等三角形的对应线段(中线、角平分线)有何关系?那么相似三角形的对应线段(中线、角平分线)又有怎样的关系呢?
3、小结相似三角形对应线段的关系。
三、例题教学
1、见课本P107的例题2
练习:见课本P108 1、2、
2、如图:已知梯形上下底边的长分别为36和60,高为32,这个梯形两腰的延长线的交点到两底的距离分别是多少?
3、△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件EFGH,使正方形的一边HG在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是什么?
变题1:若四边形EFGH为矩形,且EF:EH=2:1,求矩形EFGH的面积。
变题2:已知:直角三角形的铁片ABC的两条直角边BC、AC的长分别为3和4,如图所示,分别采用(1)(2)两种方法,剪出一块正方形铁片,为使剪去正方形铁片后剩下的边角料较少,试比较哪种剪法较为合理,并说明理由。
4、如图,在△ABC中,AB=5,BC=4,AC=3,PQ∥AB,P点在AC上(与点A、C不重合),点Q在B、C上。
(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;
(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长;
(3)在AB上是否存在点M,使得△PQM是等腰直角三角形?若存在,求出PQ的长。