相似的探索性问题导学案

探索三角形相似的条件
??????探索性问题
班级 姓名 学号
一、例题分析:
1、如图,已知∠ABC=∠CDB=90°,AC=a,BC=b,当BD= 时,△ABC与△CDB相似;
2、如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=12;在AB上取一点E,使得△ADE与△ABC相似,则AE的长为 ;
3、如图,在△ABC中,若点P是AB边上一点,过点P作直线不与直线AB重合,截得的三角形与原三角形相似,满足这样条件的三角形最多有 条;

4、如图,在△ABC中,∠C=90°,BC=8cm,AC∶AB=3∶5,点P从点B出发,沿BC向点C以每秒2cm的速度移动;点Q从点C出发,沿CA向点A以每秒1cm的速度移动;
(1)经过多少秒时,△CPQ∽△CBA?
(2)经过多少秒时,△CPQ与△CBA相似?

5、(启东作业本68第14题)如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连接FC.(AB>AE)
(1)△AEF与△EFC是否相似,若相似,证明你的结论;若不相似,请说明理由;
(2)设 ,是否存在这样的 值,使△AEF与△BFC相似?若存在,证明你的结论并求出 的值;若不存在,说明理由.

6、(I)如图点P在□ABCD的对角线BD上,一直线过点P分别交BA、BC的延长线于点Q、S,交AD、CD于点R、T.说明:PQ•PR=PS•PT;


(II)如图(1),图(2),当点P在□ABCD的对角线BD或DB的延长线上时,PQ•PR=PS•PT是否仍然成立?若成立,试给出说明;若不成立,试说明理由[要求仅以图(1)为例进行说明];

(III)如图(3),ABCD为正方形,A、E、F、G四点在同一条直线上,并且AE=6cm,EF=4cm,试以(I)所得结论为依据,求线段FG的长度.

7、等腰三角形ABC中,AB=AC=8,∠BAC=120°,P为BC的中点.小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.
(1)如图(a),说明:当三角板的两边分别交AB、AC于点E、F时,△BPE∽△CFP;
(2)将三角板绕点P旋转到图(b)的情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE∽△CFP还相似吗?(只需写出结论)
②探究2:连接EF,△BPE∽△PFE是否相似?请说明理由;


三、课后作业:
1、如图,在梯形ABCD中,AB∥CD,∠A=90°,AB=3,CD=2,AD=7,在AD上是否存在点P,使△PCD与△PAB相似?若存在,求出DP的值;若不存在,请说明理由。

2、如图,在矩形ABCD中,AB=12cm,BC=6 cm,点P从点A出发,沿AB向点B以每秒2cm的速度移动;点Q从点D出发,沿DA向点A以每秒1cm的速度移动,经过多少秒时,以Q、A、P为顶点的三角形与△ABC相似?

3、如图,等腰梯形ABCD中,AD∥BC,AD=3 cm,BC=7 cm,∠B=60°,P为下底BC上一点,(不与B、C重合)连结AP,过P点作PE交DC于E,使得∠APE=∠B。
(1)说明:△ABP∽△PCE.
(2)求等腰梯形的腰AB的长;
(3)在底边BC上是否存在一点P,使得DE∶EC=5∶3?如果存在,求BP的长;如果不存在,请说明理由。

4、已知:如图(1),在□ABCD中,O为对角线BD的中点.过O的直线MN交直线AB于点M,交直线CD于点N;过O的另一条直线PQ交直线AD于点P,交直线BC于点Q,连接PN、MQ.
(1)试说明△PON与△QOM全等;
(2)若点O为直线BD上任意一点,其他条件不变,则△PON与△QOM又有怎样的关系?试就点O在图(2)所示的位置,画出图形,说明你的猜想;
(3)若点O为直线BD上任意一点(不与点B、D重合),设OD:OB= ,PN= ,MQ= ,则 与 之间的函数关系式为____________.

5、已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.
在图甲中,说明:PC=PD;
在图乙中,点G是CD与OP的交点,说明△POD∽△PDG.
将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长.