在教学中我们经常听到学生反映上课听老师讲课,听得很“明白”,但到自己解题时,总感到困难重重,无从入手;事实上,有不少问题的发生,并不是因为这些问题的解答太难以致学生无法解决,而是其思维形式或结果与具体问题的解决存在着差异,也就是说,这时候,学生的数学思维存在着障碍。这种思维障碍,有的是来自于我们教学中的疏漏,而更多的则来自于学生自身,来自于学生中存在的非科学的知识结构和思维模式。因此,研究高中学生的数学思维障碍对于增强高中学生数学教学的针对性和实效性有十分重要的意义。
一、高中数学思维障碍形成的原因
学习本身是一种认识过程,在这个课程中,个体的学习总是要通过已知的内部认知结构,对“从外到内”的输入信息进行整理加工,以一种易于掌握的形式加以储存,也就是说学生能从原有的知识结构中提取最有效的旧知识来吸纳新知识,即找到新旧知识的“媒介点”,这样,新旧知识在学生的头脑中发生积极的相互作用和联系,导致原有知识结构的不断分化和重新组合,使学生获得新知识。在这个过程中,一方面,教师不顾学生的实际情况(即基础)或不能觉察到学生的思维困难之处,而是任由教师按自己的思路或知识逻辑进行灌输式教学,则到学生自己去解决问题时往往会感到无所适从;另一方面,当新的知识与学生原有的知识结构不相符时或者新旧知识中间缺乏必要的“媒介点”时,这些新知识就会被排斥或经“校正”后吸收。因此,如果教师的教学脱离学生的实际;如果学生在学习高中数学过程中,其新旧数学知识不能顺利“交接”,那么这时就势必会造成学生对所学知识认知上的不足、理解上的偏颇,从而在解决具体问题时就会产生思维障碍,影响学生解题能力的提高。
二、高中数学思维障碍的具体表现
1.数学思维的肤浅性:由于学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的去理解,一般的学生仅仅停留在表象的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此产生了以下后果:(1)学生在分析和解决数学问题时,往往只顺着事物的发展过程去思考问题,仅注重由因到果的思维习惯,不注重变换思维的方式,缺乏沿着多方面去探索解决问题的途径和方法。(2)缺乏足够的抽象思维能力,学生往往善于处理一些直观的或熟悉的数学问题,而对那些不具体的、抽象的数学问题常常不能抓住其本质,转化为已知的数学模型或过程去分析解决。
2.数学思维的差异性:由于每个学生的数学基础不尽相同,其思维方式也各有特点,因此不同的学生对于同一数学问题的认识、感受也不会完全相同,从而导致学生对数学知识理解的偏颇。这样,学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。另一方面学生不知道用所学的数学概念、方法为依据进行分析推理,对一些问题中的结论缺乏多角度的分析和判断,缺乏对自我思维进程的调控,从而造成障碍。