摘要:本文主要论述水泥厂风机采用高压变频调速的必要性、可行性、经济性和实际运行经验。对高压变频调速装置的选择,使用提出了一些建议,供水泥厂应用时参考。
一、概述
长期以来,我国政府对节能工作十分重视,我国能源节约与资源综合利用“十五”规划提出高压大功率变频调速作为重点发展的节电技术之一,要求大力推动高压大功率变频调速示范工程。
目前,水泥行业的竞争非常激烈,但关键还是制造成本的竞争,而电动机电耗占成本近30%,而拖动风机用的高压电动机在电机中占有很大的比重,因此做好电动机的降耗增效工作就显得极为重要。目前很多水泥厂的风机大马拉小车现象严重,如果利用变频调速技术改变设备的运行速度,以调节风量的大小,可以既满足生产要求,又达到节约电能,同时减少因调节挡板而造成挡板和管道的磨损及经常停机检修所造成的经济损失。因此,在水泥厂风机采用变频调速技术,能节约大量能源,提高生产效率,为水泥厂带来较大的效益。根据具体情况,风机采用变频调速后,节电率在30%-50%范围内,通常1年半到2年左右内可收回变频器的设备和其它安装等附加费用等总投资。
二、传统挡板调节存在的问题
风机传统的调节方式是调节入口挡板的开度,以此来调节风量,是一种经济效益差、能耗大、设备损坏严重、维修难度大、运行费用高的落后办法。主要存在以下问题:
1.采用挡板调节时,大量的能量损耗在挡板的截流过程中。对风机而言,最有效的节能措施是采用调速来调节流量。由于风机大都为平方转矩负载,轴功率则与转速大致成立方关系,所以当风机水泵转速下降时,消耗的功率大大下降。图1表示了风机采用各种调节方法时消耗功率与风量关系曲线。其中曲线1为输出端风门控制时电机消耗的功率,2为输入端风门控制时电机消耗的功率,3为转差调速控制(采用滑差电机,液力耦合器)时电动机消耗的功率,4为变频调速控制时电动机消耗的功率,最下面一条曲线为调速控制
时风机实际所需轴功率(即电机轴输出功率)。可见,在众多的调节方式中,节能效果最好的是变频调速。
2.介质对挡板阀门和管道冲击较大,设备损坏严重。
3.挡板动作迟缓,手动时人员不易操作,而且操作不当会造成风机震动。挡板执行机构一般为大力矩的电动执行器,故障较多,不能适应长期频繁调节,调节线性度差,构成闭环自动控制较难,且动态性能不理想。
4.异步电动机在直接起动时起动电流一般达到电机额定电流的6-8倍,对电网冲击较大,也会引起电机发热,强大的冲击转矩对电机和风机的机械寿命存在很多不利的影响。也有绕线式电机采用水电阻方式进行起动的,存在设备复杂,可靠性低等缺点。过去也有水泥厂采用液力耦合器进行调速。液力耦合装置缺点是体积大、噪声大、调速范围窄、效率低、油系统维护复杂。
三、采用变频调速的优点
1.变频调速能节约原来损耗在挡板截流过程中的大量能量,大大提高了经济效益。异步电动机的变频调速是通过改变定子供电频率f来改变同步转速而实现调速的,在调速中从高速到低速都可以保持较小的转差率,因而消耗转差功率小,效率高,是异步电动机的最为合理的调速方法。
由公式 n=60f(1—s)/p 可以看出,若均匀地改变供电频率f,即可平滑地改变电动机的同步转速。异步电动机变频调速具有调速范围宽、平滑性较高、机械特性较硬的优点,目前变频调速已成为异步电动机最主要的调速方式,在很多领域都获得了广泛的应用。
对离心式风机而言,流体力学有以下原理:输出风量Q与转速n成正比;输出压力H23
与转速n 正比;输出轴功率P 与转速n 正比;即:
Q1/Q2=n1/n2
H1/H2=(n1/n2)2
P1/P2=(n1/n2)3
当风机风量需要改变时,如调节风门的开度,则会使大量电能白白消耗在风门及管路系统阻力上。如采用变频调速调节风量,可使轴功率随流量的减小大幅度下降。变频调速时,当风机低于额定转速时,理论节电为
E=〔1-( n′/n)〕×P×T (kWh)
式中: n-额定转速
n′—— 实际转速
P——额定转速时电机功率
T——工作时间
以上公式为变频节能提供了充分的理论依据。
2.采用变频调速后,可实现软起动,对电网的冲击和机械负载的冲击都大大减小了,同时延长了电机和风机的寿命。同时,采用变频调速后,电机的无功功率通过变频器直流环节的滤波电容进行了瞬时补偿,变频器的输入功率因数可达0.95以上。相对电机直接工频运行而言,功率因数大大改善,对低速电机效果尤为明显。实现变频调速后,风机经常在额定转速以下运行,介质对风机风扇和挡板的磨损,轴承的磨损,密封的损坏都大大降低,减少了维护工作量。电机运行的振动和噪声也明显降低。