湘教版九年级上册数学导学案
4.4解直角三角形的应用(1)
【学习目标】
1.使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.
2.逐步培养学生分析问题.解决问题的能力.
3.渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.
重点:善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
难点:根据实际问题构造合适的直角三角形.
【预习导学】
在Rt∆ABC中,∠C=900
1.若∠A=600,b= ,求a.
2.若∠B=350,c=8,用计算器求 a的值(结果精确到0.1)
【探究展示】
(一)合作探究
某探险者某天到达点A处时,他准备估算出离他的目的地――海拔为3500m的山峰顶点B处的水平距离(图见课本125页的图4-15).你能帮他想出一个可行的办法吗?
探究讨论:
先把图4-15抽象,并构造出直角三角形.
如图,BD表示点B的海拔,AE表示点A的海拔,过点A 作AC⊥BD即可以构造出直角三角形.
在Rt∆ABC中,AC表示A处离B处的水平距离,要求AC,只需测出仰角∠BAC和A.B的相对高度AC即可.
如果测得点A的海拔AE=1600m,仰角∠BAC=400,求A.B两点之间的水平距离AC(结果保留整数).
学生上台展示 因为BD= ,AE= ,AC⊥BD,BAC=400,
所以BC=
在Rt∆ABC中,tan∠BAC=
AC=
(二)展示提升
1.在离上海东方明珠塔底部1000m的A处,用仪器测得塔顶的仰角∠BAC为250,仪器距地面高AE为1.7m,求上海东方明珠塔的高度BD(结果精确到1m).
2.某厂家新开发的一种电动车的大灯A射出的光线AB.AC与地面MN所成的夹角∠ABN.∠ACN分别为80和150,大灯A与地面的距离为1m,求该车大灯照亮地面的宽度BC(不考虑其他因素,结果精确到0.1m).
【知识梳理】
求某些不便直接测量的物体的高或距离时,可以根据实际问题构造直角三角形,再利用解直角三角形的方法来求.
解直角三角形的应用题一般步骤:
(1) 。
(2) 。
(3) 。
(4) 。
【当堂检测】
1.一艘游船在离开码头A后,以和河岸成300角的方向行驶了500m到达B处,求B处与河岸的距离BC.
2.有一段斜坡BC长为10m,坡角∠CBD=120,为方便残疾人的轮椅通行,现准备把坡角降为50.
求坡高CD(结果精确到0.1m);
求斜坡新起点A与原起点B的距离(结果精确到0.1m).
【学后反思】
1.你学到了什么?
2.你还有什么样的困惑?
3.你对自己本节课的表现满意的地方在哪儿?哪些地方还需加油?