2014华中师大一附中高考物理5月模拟试卷(有答案)
二、选择题(本题共8小题。每小题6分。其中14-17题为单项选择题,在每小题给出的四个选项中,只有一项符合题目要求;18-21题为多项选择题,在每小题给出的四个选项中,有多项符合题目要求。全部选对的得6分,选对但不全的得3分,有选错的得0分)
14. 结合你所学知识和图中描述的物理学史,判断下列说法错误的是
A.图中“力学”高峰期是指牛顿建立动力学理论
B.伽俐略将他 的“斜面实验”和“比萨斜塔实验” 都记录在他的《自然哲学的数学原理》一书中
C.“电磁学”理论的完备晚于“力学”理论的完备
D.法拉第发现了电磁感应现象的规律
15. 如图所示,一轻杆两端分别固定着质量为mA和mB的两个小球A和B(可视为质点)。将其放在一个直角形光滑槽中,已知轻杆与槽右壁成α角,槽右壁与水平地面成θ角时,两球刚好能平衡,且α≠θ,则A、B两小球质量之比
A. B. C. D.
16.如图所示,质量分别为mA=2kg、mB=1kg的A、B两物块叠放在水平桌面上,A、B之间的动摩擦因数为 ,B与水平桌面间的动摩擦因数为 ,一根轻绳跨过定滑轮将A、C两物块连接。欲使A、B发生相对滑动,物块C的质量至少达到 (重力加速度g=10m/s2)
A.0.3kg B.0.6kg C. kg D.3kg
17.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火, 使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步轨道3。轨道
1、2相切于Q点,轨道2、3相切于P点,如右图。关于这颗卫星分别
在1、2、3轨道上正常运行时,以下说法正确的是
A.卫星在三个轨道运动的周期关系是:T1
C.卫星在轨道1上经过Q点时的动能小于它在轨道2上经过Q点时的动能
D.卫星在轨道2上运动时的机械能可能等于它在轨道3上运动时的机械能
18. 如图甲为小型旋转电枢式交流发电机,电阻为r=2 矩形线圈在磁感应强度为B的匀强磁场中,绕垂直于磁场方向的固定轴OO′匀速转 动,线圈的两端经集流环和电刷与右侧电路连接,右侧电路中滑动变阻器R的最大阻值为R0= ,滑动片P位于滑动变阻器中央,定值电阻R1=R0、R2= ,其它电阻不计。从线圈平面与磁场方向平 行时开始计时,闭合开关S,线圈转动过程中理想交流电压表示数是10 V,图乙是矩形线圈磁通量Φ随时间t变化的图象.则下列正确的是
A.电阻R2上的热功率为1W
B.0.02 s时滑动变阻器R两端的电压瞬时值为零
C.线圈产生的e随时间t变化的规律是e=102cos100π t(V)
D.线 圈开始转动到t= s的过程中,通过R1的电荷量为
19. 如图所示,在固定的带电小球A的正上方有一竖直的绝缘光滑细杆,细杆上
套一个带电的小环,其内径略大于细杆的直径。小环在B处时有向下的加速度,
若小球从B处开始以一定的初速下落,到C处速度恰好为零(在运动过程中,
A、B电量不变)。则下列说法正确的是
A.小球和小环一定带异种电荷 B.小环在C点时加速度一定最大
C.小环在C点时电势能一定最大
D.小环在B、C连线中点时速度一定最大
20.现用一稳恒电源分别为灯泡L1(规格为“8V 8W”)、L2(规格为“4V 8W”)供电,发现两灯均能正常发光。则下列说法正确的是
A.此电源的电动势和内阻分别为12V、4
B.电源为灯泡L1供电时,电源的效率比为L2供电时高
C.用此电源为内阻为1 的电动机直接供电,经测量,回路电流为1A,则电动机输出的机械功率为7W
D.将电源、L1分别与匝数比为1:4的理想升压变压器的输入、输出端相接,则L1必定会被烧毁。
21. 如图所示,在正方形区域abcd内有方向垂直于纸面向里、磁感应强度大小为B的匀强磁场。在 t=0时刻,位于正方形中心O的离子源向平面abcd内各个方向发射出大量带正电的粒子,所有粒子的初速度大小均相同,粒子在磁场中做圆周运动的半径恰好等于正方形的边长,不计粒子的重力以及粒子间的相互作用力。已知平行于ad方向向下发射的粒子在t=t0时刻刚好从磁场边界cd上某点离开磁场,下列说法正确的是
第Ⅱ卷 (共174分)非选择题部分
三、非选择题(包括必考题和选考题两部分.第22题~第32题为必考题,每个试题考生都必须做答.第33题~第40题为选考题,考生根据要求做答)
(一)必考题
22.(6分)用如图1所示装置验证牛顿第二定律。
(1)在探究“加速度和合外力的关系”时,要使得细线对小车的拉力等于小车受到的合外力,下列做法不正确的是 。
(2)实验中描绘的 图象如图2所示,则 = ,出现这种情况的原因是什么 。
23. (9分)某同学利用如图所示的实验电路来测量电阻的阻值.
(1)将电阻箱接入a、b之间,闭合开关.适当调节滑动变阻器R′后保持其阻值不变.改变电阻箱的阻值R,得到一组电压表的示数U与R的数据如下表:
请根据实验数据在图6-14-4中作出U-R关系图象.
(2)用待测电阻Rx替换电阻箱,读得电压表示数为2.00 V.利用(1)中测绘的U-R图象可得Rx=________Ω.
(3)使用较长时间后,电池的电动势可认为不变,但内阻增大.若仍用本实验装置和(1)中测绘的U-R图象测定某一电阻,则测定结果将________(选填“偏大”或“偏小”).现将一已知阻值为10 Ω的电阻换接在a、b之间,你应如何调节滑动变阻器,便仍可利用本实验装置和(1)中测绘的U-R图象实现对待测电阻的准确测定?
24. (13分)如图所示的装置叫做阿特伍德机,是阿特伍德创制的一种著名力学实验装置,用来研究匀变速直线运动的规律。绳子两端的物体下落(上升)的加速度总是小于自由落体的加速度g,同自由落体相比,下落相同的高度,所花费的时间要长,这使得实验者有足够的时间从容的观测、研究。已知物体A、B的质量相等均为M,物体C的质量为m,轻绳与轻滑轮间的摩擦不计,轻绳不可伸长且足够长,如果 ,求:
(1)物体B从静止开始下落一段距离的时间与其自由落体下落同样的距离所用时间的比值。
(2)系统在由静止释放后的运动过程 中,物体C对B的拉力。
25. (19分)如图所示,MN、PQ为倾斜放置的足够长的 平行光滑导轨 ,导轨间距L为0.5m,倾角θ为30°,底端连接电阻R为2.0 Ω,MC与PD长度均为4.5m,电阻均为2.25Ω,且均匀分布,其余部分电阻不计,整个装置处在磁感应强度B为2.0T,方向垂直导轨平面向上的匀强磁场中。导轨底部垂直导轨放置一根质量m为0.2kg的金属棒,且与导轨接触良好,不计金属棒电阻,现在对金属棒施加一平行导轨向上的拉力F,使其从静止开始以1.0m/s2的加速度沿导轨向上做匀加速直线运动,g=10m/s2。
(1)从金属棒开始运动时计时,求金属棒上电流大小的表达式;
(2)从开始运动至到达CD位置过程中,拉力F的最大值是多少?
(3)如果金属棒运动到CD位置时撤去拉力F,且金属棒从离开CD位置到速度减小为0经历的时间是0.5s,求这0.5s内系统产生的热量。
三、选修部分:每科只需选做一题,多做无效
33.(1) (6分)如图6是一定质量的理想气体的p-V图,气体从A→B→C→D→A完成一次循环,A→B(图中实线)和C→D为等温过程,温度分别为T1和T2.下列说法中正确的是________.
图6
A.T1>T2
B.从C→D过程放出的热量等于外界对气体做的功
C.若气体沿直线由A→B,则气体的温度先降低后升高
D.从微观角度讲B→C过程压强降低是由于分子的密集程度减少而引起的
E.若B→C过程放热200 J,D→A过程吸热300 J,则D→A过程气体对外界做功100 J
(2) (9分)如图7所示,一上端开口的圆筒形导热汽缸竖直静置于地面,汽缸由粗、细不同的两部分构成,粗筒的横截面积是细筒横截面积S(cm2)的2倍,且细筒足够长.粗筒中一个质量和厚度都不计的活塞将一定量的理想气体封闭在粗筒内,活塞恰好在两筒连接处且与上壁无作用,此时活塞相对于汽缸底部的高度h=12 cm,大气压强p0=75 cmHg.现把体积为17S(cm3)的水银缓缓地从上端倒在活塞上方,在整个过程中气体温度保持不变,不计活塞与汽缸壁间的摩擦.求活塞静止时下降的距离x.
图7
34. (1) (6分)一列简谐横波沿x轴正方向传播,t时刻波形图如图2中的实线所示,此时波刚好传到P点,t+0.6 s时刻的波形如图中的虚线所示,a、b、c、P、Q是介质中的质点,则以下说法正确的是( )
图2
A.这列波的波速可能为50 m/s
B.质点a在这段时间内通过的路程一定小于30 cm
C.质点c在这段时间内通过的路程可能为60 cm
D.若T=0.8 s,则当t+0.5 s时刻,质点b、P的位移相同
E.若T=0.8 s,当t+0.4 s时刻开始计时,则质点c的振动方程为y=0.1sin (52πt) (m)
(2)(9分)如图所示为一巨大的玻璃容器,容器底部有一定的厚度,容器中装一定量的水,在容器底部有一单色点光源,已知水对该光的折射率为 ,玻璃对该光的折射率为1.5,容器底部玻璃的厚度为d,水的深度也为d。
求:①这种光在玻璃和水中传播的速度
②水面形成的光斑的面积(仅考虑直接由光源发出的光线)
35. (1)(6分)在如图所示的光电效应现象中,光电管阴极K的极限频率为v0,现用频率大于v0的光照射在阴极上,当在A、K之间加一数值为U的反向电压时,光电流恰好为零。由以上信息可知:光电子的最大初动能为_________;若入射光频率为v(v>v0),则光电子的最大初动能为_________。
(2)(9分)如图所示,光滑水平面上,质量为2m的小球B连接着轻质弹簧,处于静止;质量为m的小球A以初速度v0向右匀速运动,接着逐渐压缩弹簧并使B运动,过一段时间,A与弹簧分离。(弹簧始终处于弹性限度以内)
①在上述过程中,弹簧的最大弹性势能是多大;
②若开始时在B球的右侧某位置固定一块挡板(图中未画出),在A 球与弹簧分离之前使B球与挡板发生碰撞,并在碰后立刻将挡板撤走。设B球与固定挡板的碰撞时间极短,碰后B球的速度大小不变但方向相反。试求出此后弹簧的弹性势能最大值的范围。
物理部分
14. B 15. D 16. C 17.C 18. D 19. BC 20. ABC 21.BC
22.(1)C (2)g 砝码及小桶质量过大
23.
24.
25. 【参照答案】(1) 0≤t<3s时,i=BLatR+at2MNr=2t4+t2(A)
t≥3s时,i=BLatR+2r=2t13(A)
(2) Fm=1.7N
(3) Q=0.25J。
【名师解析】(16分)
(1)由运动学公式得 ,
解得t1=3s(1分)
,符合题目条件,(1分)
故此时的F值就是该过程中的最大值,即Fm=1.7N(2分)
(3)设金属棒由CD位置向上滑行距离S时 速度减为零,此过程初速度为:
上滑过程的加速度 (1分)
(2分)
代入数据得:S=0.65m(1分)
设系统产生的热量为Q,由能量守恒得 (1分)
代入数据解得Q=0.25J。(1分)
33.答案 (1)ABE (2)2 cm
解析 (1)p-V图线为反比例函数图线,由理想气体状态方程pVT=C可知,图线离原点越远温度越高,即T1>T2,A正确;从C→D过程为等温过程,气体体积减小,压强增大,由热力学第一定律可知,B正确;从A→B过程,虚线与等温线AB的距离先增加再减小,气体的温度先升高再降低,C错误;从B→C过程气体体积不变,分子的密集程度不变,压强降低是由于温度减小,分子平均速率减小而引起的,D错误;状态C、状态D温度相同有相同的内能,A、B温度相同有相同的内能,由热力学第一定律分析可得E正确.
(2)以汽缸内封闭气体为研究对象.
初态压强p1=p0=75 cmHg,初态体积V1=2hS
末态体积V2=2(h-x)S
末态压强p2=(p0+x+17S-2xSS)
由玻意耳定律可知
p1V1=p2V2
即75×2×12S=(75+x+17-2x)×2(12-x)S
化简得x2-104x+204=0
解得x=2 cm或x=102 cm(舍)
34.答案 (1)ACD (2)
解析 (1)由波形图可知波长λ=40 m,0.6 s=nT+34T(n=0,1,2…),T=2.44n+3 s(n=0,1,2…),当n=0时,T=0.8 s,v=λT=50 m/s,故A选项正确;n=1时,质点c恰好振动(0.6-2.47×14) s=3.67 s=112T,s=32×4A=60 cm,故C选项正确;当T=0.8 s时,画出t+0.5 s时刻的波形图可以判断D选项正确;若T=0.8 s,ω=2πT=2.5π rad/s,当t+0.4 s时刻开始计时,v=50 m/s,经0.4 s波向前传播20 m,作图得质点c的振动方程为y=0.1cos (5π2t) (m),E选项错误.
(2)
35.
(2)⑴当A球与弹簧接触以后,在弹力作用下减速运动,而B球在弹力作用下加速运动,弹簧势能增加,当A、B速度相同时,弹簧的势能最大。
设A、B的共同速度为v,弹簧的最大势能为E,则A、B系统动量守恒 ①
由机械能守恒: ………………………………………………②
联立两式得: ……………………………………………………………………③
⑵设B球与挡板碰撞前瞬间的速度为vB,此时A的速度为vA。
系统动量守恒: ……………………………………………………④
B与挡板碰后,以vB向左运动,压缩弹簧,当A、B速度相同(设为v共)时,弹簧势能最大,为Em,则: …………………………………………………………⑤
…………………………………………………………………⑥
由④⑤两式得: 代入⑥式,化简得: …⑦
而当弹簧恢复原长时相碰,vB有最大值vBm,则:
mv0=mvA′+2mvBm mv02/2=mvA′2/2+2mvBm2/2
联立以上两式得:vBm= 即vB的取值范围为: ………………⑧
结合⑦式可得:当vB= 时,Em有最大值为: ………………………………⑨
当vB= 时,Em有最小值为: ……………………………⑩