基于神经网络的多电机同步控制系统的设计

关键字:多电机神经网络PID同步控制

  1 引言

   在造纸、印染、纺织等高精度、高转速传动系统中,随着工业自动化程度的提高和生产规模的扩大,采用单电机驱动往往难以满足生产的要求。而多电机同步控制历来是最核心的问题,对多电机同步协调控制,国内、外同行也有不少研究。在实际应用中,多电机的同步性能会因各传动轴的驱动特性不匹配、负载的扰动等因素的影响而恶化,因此同步控制方法的好坏直接影响着系统的可靠性。

   本文通过对的多电机同步传动系统主要控制策略分析,得出改进的耦合控制是当前比较好的控制思想,实际应用中采用易于实现的PID作为同步补偿控制器算法。但传统PID控制器结构简单、鲁棒性较差且抗扰动能力也不太理想。因此在控制策略上,采用神经网络控制和PID控制算法相结合的方法。仿真结果表明,将该方法用于多电机同步控制中,不仅具有良好的动态性能,而且整个系统同步精度也有所提高。

  2 多电机同步控制的原理

   对于多电机同步控制系统来说,实现的是电动机转速的跟随,受到扰动的电动机转速是变化的,其它的电动机跟随这台电动机的转速变化。在系统受到扰动后的初始状态,电动机之间的转速趋于同步越快越好,即应尽快消除转速偏差;当电动机之间的转速趋于同步时,要尽量减小转速发生超调。一般情况是要求系统中的第i台电动机转速vi和第i+l台电动机转速vi+1,之间保持一定的比例关系,即vi=a·vi+1以满足系统的实际工艺要求。这里a为转速同步系数。在实际运行过程中若要满足系统的同步要求,周期采样获取某一环节的前台电动机转速vi和后台电动机转速vi+1后,vi和vi+1按下式定义转速同步偏差时,表明在同步系数a下,vi和vi+1同步,当e≠0时,表明在同步系统aF,vi和vi+l不同步.在本文中采用改进的耦合同步控制系统(如图1),各电机采用同一电压给定的基础上,电机l转速误差△v1=v1—vfb1,电机2的转速误差△v2=v2一vfb2,计算某一电机实际速度和给定速度的偏差e,以及当前的偏差变化量△e,同步控制器补偿同样采用PID控制。其差值经过PID补偿器加到随动电机输入端。

基于神经网络的多电机同步控制

  3 基于神经网络PID控制器的建立

   BP神经网络是应用最广泛的一种人工神经网络,在各门学科领域中都具有很重要的实用价值,根据本系统的控制系统的特点,为了快速消除同步误差,本文采用BP神经网络与PID相结合的作为同步补偿方法。

  3.1 BP神经网络PID控制系统的结构

   基于BP网络的PID控制系统结构如图2所示,控制器由两部分组成:

基于神经网络的多电机同步控制

  (1)常规PID控制器,直接对被控对象进行闭环控制,并且其控制参数Kp、Ki、Kd为在线调整方式;

   (2)BP神经网络,根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化,使输出层神经元的输出对应于PID控制器的3个可调参数KD、Ki、Kd。通过BP神经网络的自学习、加权系数的调整,使BP神经网络输出对应于某种最优控制规律下的PID控制器参数。以电机作为控制对像,一般采用增量式PID控制算法进行控制。它的控制算式为:

基于神经网络的多电机同步控制

  式中KP、KI、KD分别为比例、积分、微分系数.

  3.2 神经网络PID的算法实现

   1)训练阶段的工作

   第l步:设计输入输出神经元。本BP网络的输入层设置3个神经元,分别为输入速度vi、速度偏差e和偏差变化量△e,输出层有3个神经元,为PID控制器的3个可调节参数Kp、Ki、Kd;

   第2步:设计隐含层神经元个数。本文初步确定隐含层节点数为5个.学习一定次数后,不成功再增加隐含层节点数,一直达到比较合理的神经元数为止;

   第3步:设计网络初始值。本文中设定的学习次数N=5000次,误差限定值E=0.02;

   第4步:应用Simulink对BP网络进行训练和仿真。

   2)测试阶段的工作

   在测试阶段,主要是对训练过的网络输入测试样木,测试网络的学习效果,即判断网络的运算值与样本的期望值之差是否在允许的范围之内。在此不再赘述具体判定过程。

  4 仿真与分析

   本文以2台电机同步为模型进行仿真。在电机的参数设定时,对2台电机的参数取相同值。电机参数为:定子每相绕组电阻R=5.9Ω,定子d相绕组电感Ld=0.573,转子电阻R=5.6Ω转子电感L=O.58给定转速n=500rad/sec,极对数为3。在t=0.05 s时,突加阶跃扰动,利用Matlab对传统PID和神经网络PID分别进行仿真,得到实验曲线如图所示.

基于神经网络的多电机同步控制

基于神经网络的多电机同步控制

  比较两种仿真结果,经计算采用常规PID补偿器时,突加负载扰动后,同步误差△Verror=0.26%采用神经网络PID补偿器时,突加负载扰动后,同步误差△Verror.=O.08%,由些可以看到采用神经网络PID补偿器方法的时候,系统的同步性能、抗干扰性能优于只采用常规PID补偿器时的性能,其具有更好的控制特性。

  5 结束语

   本文针对于多电机同步控制中出现的多变量、强耦合、具有大惯性环节、难以建立准确数学模型的被控对象,在传统PID的基础上引入神经网络的的概念,将神经网络PID用于速度同步补偿中,仿真结果表明,该方法使系统的抗干扰能力增强,同步精度有所提高,控制效果良好。